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Graded contractions of bilinear invariant forms of Lie algebra
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Departiment of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada

Received 28 February 1994

Abstract. We intreduce a new construction for bilinear invarinnt forms on Lie algebras based
on the method of graded contractions. The general method is descrnibed and the Zs, Z3 and
Zy © Zz contractions are found. The resufts can be applied to all Lie algebras and superalgebras
(finite or infinite dimensional) which admit the chosen gradings. We consider some examples:
contractions of the Killing form, toreidal contractions of s{(3, C) and we briefly discuss the
limit to new Wess~-Zumino-Witten actions.

1. Intoduction

Contractions of Lie algebras were introduced into physics forty years ago by Wigner and
In&nii in order to obtain a formal method of passing from the Poincaré group to the Galilei
group [11. In general, contractions consist of the introduction of parameters into the basis of
a Lie algebra such that, for some singular value of these parameters, we get a different (i.e.
non-isomorphic) algebra. The interest in this method for physics stems from the fact that
it relates different symmetry groups from which the contracted group can be understood
as being an ‘approximation’ of the ‘exact’ or non-contracted group. (A discussion of the
concept of contraction and some generalizations of the Wigner-In&nit method are given in
[21)

A different approach has been developed recently which is based on the preservation
of some grading of the Lie algebra through the contraction procedure. The general method
of so-called graded contractions is presented in [3]. Clearly, as a Lie algebra is contracted,
many related objects are deformed as well, for example their representations, the tensor
product of their representations, their Casimir operators, etc. The methods of graded
contractions for the representations (which contain the contractions of algebras as a particular
case) and their Casimir operators can be found in [4] and [5], respectively. However,
contractions of bilinear invariant forms have not been considered within that framework so
that one is restricted to the Killing form of the contracted algebras. The present method
aliows one to enlarge the possibilities and, in some sense, completes the general theory of
graded contractions.

In this paper, we use the concept of graded contractions of Lie algebras to construct
new symmetric bilinear invariant forms of Lie algebras (in general, non-semisimple} starting
from the known bilinear form of & non-contracted algebra. Even within a single Lie algebra,
one can obtain different bilinear forms starting from one bilinear invariant form. As for the
method of graded contractions of algebras, the present procedure is very general and can
be applied to any Lie algebra or superalgebra of finite or infinite dimension. In addition,
the results are vniversal in the sense thaf, given a grading group (which is Abelian for
our purpose), the problem is solved simultaneously for all Lie algebras of any type and
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dimension which admit the chosen grading. The construction is presented in the next
section. In section 3, we find the general bilinear invariant form obtained from preserving
Zy, Zy and Zy @ Zy gradings. In section 4 we present some examples: contractions of the
Killing form, toroidal contractions of sI(3,C) (or, more precisely, of its complexification
Az) and the ‘deformation’ of Wess—Zumino—-Witten (WZw) actions (defined over some group
manifold) into modified WZw actions defined over a coniracted group.

2. Description of the method

Consider a Lie algebra g (comresponding to a Lie group &) defined over the field K(= R
or C). A symmetric bilinear invariant form £ on g is a mapping

Q:gxg— K 2.1
which satisfies the symmetry property

QX ) =2, X) (2.2)
and is G-invariant

Q@xeLere ) =QX, 1) (2.3

withX,Yegand ¢ € G.
In terms of the element Z € g corresponding to ¢, (2.3) is equivalent to

QX,[Z, YD+ 2(,[Z,X])=0. 2.4

Given a basis {X1, ..., Xamy} of g such that [X4, Xl = f$pX¢, the bilinear form is
often written as a matrix Qa0 = 2(X 4, X) which 1s symmetric (from (2.2)) and satisfies
FBScn + fo-Qap = 0 (from (2.4)).

Let us recall some definitions and properties that we need from the theory of graded
contractions of Lie algebras (more details are in [3,4]). A ' grading of a Lie algebra g
consists of the decomposition

g=P s (2.5)

pel’

into eigenspaces under the action of a set of automorphisms of finite order on g (for our
purposes we can take I' to be an Abelian finite group). Each of these automorphisms
provides g with a grading by a cyclic group having the same order. Thus, the grading
group I' is the tensor product of all the cyclic groups associated with every automorphism:
N=E2Zy.

The commutators in g inherit a grading structure from the automeorphisms of finite order,
ie.if X € gy and ¥ € gy, then

[X.Y]=Z g (2.6)

where Z can be equal to zero. (The addition g -+ v denotes the product of elements £ and
v in the grading group I')) This grading structure can be written symbolically

0# [gu. 8] € guaw mov, u+verl, @27
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A graded contraction g° of g is defined by modifying the commutators

(8, &vle = €unlgu, Bu] C EpuBuan (2.8)

where & € K. We have kept the £ parameter in the right-hand side of (2.8) in order to show
that if & = O then the commutator of an element of g, with an element of g, vanishes.
From the definition (2.8), we see that the ¢ parameters are symmetric (i.e. £, = £&,,,) and
by enforcing the Jacobi identities on the new commnutators one finds that the £ parameters
must satisfy the contraction relations

EuvEutv) = EvEuti 2.9

for all values of the indices. A solution & of (2.9) defines a contraction, i.e. a new Lie
algebra.

Now we define the contractions of the bilinear invariant form 2. Using the same
notation as in {2.7), we define the contracted symmetric bilinear invariant form QY as

Q¥ (gus g} = VunS2(gp, 80) (2.10)

with y,.v € K and g, (g,) representing any element X € g,.(g.).
From the properties of symmetry and invariance, and given a contraction matrix £ (i.e.
a contracted algebra), we get the following restrictions upon y:

Yu,v = Vou (2.11)

and

EanVasku,y = Exu¥itu - (2.12)

Progf. The relation (2.11} follows from equations (2.2) and (2.10).
The condition (2.12) is obtained from substituting (2.10) into (2.4)

¥ (g, Lgn, gole) + 2V (gu. [82. 20):) =0
Q¥ (gu. anvlgn, &)+ g, e pulan, gul) =0
ELVua+vS2 (8w, (84, 8u]) + &x Vo a+u 2 {8y, &0, gu]) = 0.

By comparing the last line with the invariance condition relation

Q(gu, [gr. &) + Q{gv, (82, £, =0

before contraction, we see that one must have £5 v¥uatv = Er pWortu- The form (2.12) is
obtained by using the symmetry properties of € and y. O

The solutions of (2.11) and (2.12) provide new invariant bilinear forms obtained by
substituting the y parameters back into (2.10). As for the contractions of algebras and
representations, there is a trivial contracted bilinear form for which all y's are equal to zero.
However, the solution with all the ¥s equal to one is not trivial. As explained in [3], the
equations in (2.9) which contain an undefined ¢ (when the corresponding commutator has
already vanished in the non-contracted algebra) do not appear in the system of equations
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to be solved. The same occurs for the ys. If i and v are such that Q(g,, g,) = 0 then
the equations containing the corresponding ¥, , must be removed from the system (2.12),
If it does not happen, we say that this grading is generic regarding the invariant bilinear
form. Note that definitions (2.8) and (2.10) also allow one to consider deformations, i.e.
processes which occur after some commutators or bilinear forms—initially zero—become
non-trivial but which nevertheless satisfy the grading property. We shall not consider this
type of process below.

Note also that here, in general, the ‘composition’ (1 ® ¥a)y v = (71 )u(¥2)uw (Without
summation over repeated indices) of solution mairices, which we have defined for the
contractions of algebras in equations (2.8) and (2.9) of [3], does not yield a new solution.
Thus, given two solutions of (2.12), y; and y, their composition will not be a solution
unless extremely particuiar conditions on the gs are satisfied. The same applies for the
‘normalization’ of the s because it is related to the normalization of the gs. If we
perform a change of basis g, — g, = a,g, then the invariant bilincar form becomes
Q¥(g,, 81) = Vun/(@,8,)2(gy, gu). Unless we consider very particular values of ys and
es, it will not be possible to satisfy y,.u/(aua,) = 1 for all ys. Unlike the contractions
of represenfations, where we can normalize the parameters ¥ (see {4]) by changing the
basis of the representation vector space independently of the basis of the algebra, here the
normalizations of & and 7 are interdependent.

3. Ziysr, £y and Zz @ Z, contractions

In this section, we find the confractions of the invariant bilinear forms, using the results
of [3], for Lie algebras over the field of complex numbers. As in [3], we consider the
contractions with gradings of generic type. We have not normalized the ys in order to
display the possible zero parameters. (Note that the £s of the present paper are the vs in
[31.)

3.1. Zy contractions

The grading group consists of two elements I = {0, 1} with the product (denoted additively)
0+0=0 0+1=1+0=1 1+1=0.

There are three independent ¥ parameters: ¥p0, 0,1 (= ¥1,0) and ,;. We shall cast them
into a matrix form

_ { Yoo You
V= (Vo,l Y1.1)
although it should not be considered formally as a mairix, since none of the properties
of matrices—multiplication, inverse, determinant, etc—is shared by the present objects.
(Hereafter, we write only the upper triangular elements of ¥ and g, remembering that they
are symmetric.)
The condition (2.12) gives, for Zs,

£0.0%0.1 = £0,1%0.1 £0,171,1 = £1.1%0,0. 3.1

For the trivial contraction

_feoo sy _f1 1Y
(o )= oo
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the relations (3.1} become yo.1 = ¥o.1 and ypo = Y11 (which imposes no further restriction
upon yo,1). For the other trivial contraction

(1)

there are no restrictions on ¥ which are thus completely free. If 299 7 £o0,1 then yp.1 must
vanish. This happens for the Wigner—Indnii-like contraction matrix

e=(1 g)

In surnmary, we find the following contractions:

(")
(%)
(
(

—

o)
0 ?)
(3

&
e
£
£

()
()
()
()
()

where a, b and ¢ are arbitrary (possibly zero) complex numbers.

3.2. Z; contractions

3.2

The Z; contractions (Z3 consists of three elements 0, 1, 2 on which the product is the usual
addition modulo 3} are determined by six parameters {cast into matrix form)

Yoo Yot
Y= YLt

In terms of these parameters,

£0,0%0.1 = €0,1Y0,1
gg,2M1,2 = £1.200,0

€0,1¥1,1 = £1,170.2

Yo,2
Y2l
Y22

the restrictions (2.12) are

£1.1¥2,2 = £1,2%0,1 £0,0M0,2 = E0.2)0,2

£0,1%,2 = £0,21,2 £02)2.2 = E22001

£1,2%0,2 = £2.271,1

And the solutions are (with the &s given in section 4 of [3]):

€0,1¥1.2 = £1,210,0-

(3.3)



4542 M de Montigny

a b ¢ a b ¢
y(s’):( c 0) y(s”)~( 0 o)
0 b
a b ¢ a 0 0
y(a”’):( 0 0) y(a‘”’)=( b c)
0 0
a 0 0 a 00
)’(Ev)-——( 0 b) y(ew)-—( b r:)
c d
a b 0 a 0 b
V(EV”):( 0 0) ?(Bw”)=( ¢ 0) (34)
c 0
0 a O 0 0 «a
y(a"X)=( b c) y(sX)=( a b)
a ¢
D 0 0 a b 0
y(a’”)=( a b) y(s"”)=( c d)
¢ 0
a 0 b a b ¢
y(s"””)=( 0 C) y(€=(1))=( ¢ a)
d b

where a, b, ¢ and d are arbitrary. The matrix ¢ = {1) has all its entries equal to 1 (it is not
the identity matrix). Obviousky, the ys corresponding to £ = (0) are free.

3.3. Zn @ 7z contractions.

The grading group consists of four elements that we name a = 00, & = 01, ¢ = 10 and
d =11 so that their productisa+k =k, 2k =a (k=a,. ., dyandb+c=d,c+d=0b
and b+ d = ¢. In the generic case (i.e. when all the g5 are defined), the equations (2.12)
are

Eq.a¥ak = EakVak Ea kVik = &k kVa,u
EabVbe = Eqc¥Vbe = EbeVad
EqbVbd = EadVbd = EbdVa.c

Ea,cVed = EadVed = Ec.dVa b

(3.5)
EpcVdd = EbdVee = EcdVhb
EpbVae = Ebc¥bd EppVad = EbdVb.c
EpcVed = EccVab ErcVud = EcdVb,c
EedVod = EddVae EbdVed = Ed.dVab

where k = &, ¢, d. The ¥ solutions (corresponding to the £ solutions given in [3]} are in
tables 1 and 2.
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Table 1. Z; @ Za contractions of invariant bilinear forms, The y solutions corresponding to the
contractions of algebeas given i table 1 of [3] on which they must be superposed,

a b ¢ d a b ¢ d 0 a 0 & a 0 b O
a d c) 0 d 0) c b d ¢ 0 d
a b a b 0 a a 0O
\ a \ 0 \ e e
a b ¢ d (a b ¢ d 0 0 b a b 0
a d ¢ 0 4 0 ¢ b d c 0 d
00 00 00 00
\ 0 ] e e
0 0 a b 00 a b 00 @\ (0 0 0
0 b a 0 [} h e b ¢ d
c d ¢ d e f e f
e e g 8

a b 0 0\ (a & 0 0 0 a 0 a 00 0\
a 0 0 0 00 b ¢ d b c d
¢ d c d e f e f
e ¢ g 8

4. Examples

4.1. Contractions of Killing form

First, consider the algebra A, (the complexification of s/(2, C)) with basis elements
{X, ¥, Z} and commutation relations

(X, ¥Y]1=2 ¥,Z]=X% [Z,X]=Y.
From these we find that the Killing form QKliss(., .y = Tr(ad(.) ad(-)) is equal to
QKilling — diag(—2, -2, =2). 4.1
Now consider the Z; @ Z, grading
L,=CX L,=CY Ly =CZ (4.2)

where we use the same notation for the grading-group elements as in subsection 3.3.
Following (2.8}, the commutators are modified to

[X, Y], =¢p.Z [Y, 2] = ecaX [Z,X]: = &paY (4.3)
so that the Killing form that we get from the adjoint representation is
QRS = 2 diag(ep,c8h,d. Eb,c8e.ds EbdEe.d)- (4.4)
Now if we apply the definition (2.10) for the grading (4.2), the form (4.1} becomes

leﬁng'y = —-Zdi&g(}’b,ba Ye,os }’d,tl) [45)
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Table 2. %, @ Z; contractions of invariant bilinear forms. The y solutions corresponding to the contractions of algebras given in table 2 of [3] on which they must be superposed.
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which is to be compared to (4.4). This is achieved by noting that the equations (2.12) which
are relevant here (i.e. in which ¢ and y do not contain a as an index) are

Eb,cVidd = EcdVbb = EpdVer (4.6)
for which

Vbb = EbcEbd Yoo = Eb,cBed Vdd = EpdEcd 4.7)

is a possible solution. By comparing (4.5) with (4.4), we see that the form obtained by
graded confractions of A; (i.e. by the introduction of £ parameters into the commutators)
can be compatible with the y-contracted form cbtained by the present procedure, i.e. using
(2.10).

A similar compatibility exists in any general Lie algebra g with basis {X1, ..., Xamg)}
such that

[X4, X5l = fipXc = ad(Xa)cpXe. (4.8)

Suppose that X4, Xp belong to the TI'-grading subspaces g, 8,. respectively, so that
X¢ € gy4y. Then the Killing form is

QKil!ing(XmA, XvB) = Tr[ad(XMA) ad(XuB)]

= Z ad(Xya)@utorCio b A X 08 ) uv iy Diurore (4.9)
cp

from which we see that g-must be the I" inverse of v. (We have written the grading indices
along with the algebra indices.)
By introducing & parameters, as in (2.8), this becomes

QKilling.s(X#A » XuB) = Z Eu.olu ute ad(XuA)(,LHchC;er ad(XvB)er.(.u-I-rr)C (4-10)
oD

where the &'s are relevant if the corresponding commutators are defined. One can compare
{4.10) to the form obtained via our definition (2.10), i.e.

QK.Uling‘y(X.uA? XUB) — y#,ugmlﬁng(xﬂ‘q, X\J.B} (41 1)

where u + v = 0 (the identity element in I') if the algebra is such that £2 in (4.10) can be
removed by factorizing. Then one can identify

Yuv = ngz,rrgu,,uh‘r (4.12)
o

where the sum is over the o indices such that the es are defined and with u +v = 0. In
the particular case of Ay, (4.12) is just (4.7).
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4.2. Toroidal contractions of A;

There are four different fine gradings of A; (complexification of the simple Lie algebra
s1(3,C)) (6,7, one of which is the toroidal (or Cartan) grading

Ar=D__s8.
with

g1=Ce, g1 =Cey
g2 =Cep, g2 =Ce_yg

(4.13)
g3 = Cepip, g3 = Ce_papy
for which the grading group is Zy.
Consider the following invariant bilinear form on Asz:
$2{as, a—s) = S
4.14)

Q(hot;s hu,) = {mi | (xj}

where i, j = 1,2, § is any root of Az and all other elements of Q are zero. The only
relevant y parameters are ypo and yu .
The grading (4.13) is such that the relevant £ parameters are

81,2y 81,3, &1,~1: E=2,—1, £2 —3, £2,2, €3,=3, £3,=2, £3,—1, E0.p (p=-3,...,3).

From (2.12), we get the following relations:

Eu,—uVo,0 = Ep,puVYu.—p = €0,~pu¥u —p 4.15)

for . = 1,2,3. The possible £ parameters have been found and the associated algebras
identified in [8]. The y solutions are to be substituted into

QY (Eas €—g) = Y1,=1 82

Q”(e‘g, e_ﬁ) = 2,228 4.16)
ﬂy(eu-i-ﬁ; e—(a+.B)) = Y3388

QY (e, hug) = yo.ole | o}

The method can be applied readily to Kac—Moody algebras. Some examples of graded
contractions of Kac—-Moody algebras are given in [3]. (The particular case of Wigner—Enbnii
contractions of Kac—-Moody and Virasoro algebras has been studied explicitly in [9] and
[10], respectively.)
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4.3. Application to WZW models

In this subsection, we exploit the fact that. starting from a Lie algebra g with invariant
bilinear form £2, one may define a WZW action on the corresponding group manifold [11].
Suppose that the connected group &, which corresponds to the Lie algebra g, is simply
connected. Consider a three-manifold B with boundary £ = 3B and & (a map from T to
G) extended to a map from B to G (see [11]). The WZW action on a Riemann surface =
is (see {12] for further details)

1 i
Swzw(9) = — f d?y QagAfa® + o f &y e A AT A Qe 1P, (4.17)
z B

where 4, b, ¢ represent indices over T and B and 07'8,8 = A2X, (the Xs being basis
elements of the Lie aigebra g).

Now, if we consider a I" grading of g such that X4 € g4, Xz € gg etc (A4, B, ... denote
the grading labels of the subspace to which X4, Xg, ... belong, respectively), then we get
a new WZW action

1 i
Swpw () = — f Ay yanQiap AL ALY 4 —-f &y eroc AMAT AC o nQcpea s fFy
4r [f5 127 Jp
4.13)

The invariant bilinear form Q¥ must be non-degenerate, i.e. the inverse Q742 of QY ; must
be defined such that Q742Q) . = §2. The construction of a WZzw model based on a non-
semisimple group has been discussed receatly in [12] and [13] for ungauged and ganged
models, respectively.

From this point of view, we see that the contraction procedure may provide a new
geometry (in particular, a new spacetime) by starting from the geometry associated with the
non-contracted WZw model and by ‘deforming’ it compatibly with the deformation of the
algebra. The concept of contraction has not been mentioned explicitly in [12, 13} although
the invariant bilinear form used therein was obtained from a contraction procedure [14]. To
our knowledge, contraction methods have been used explicitly for the first time in {15, 16].
The contraction used in [15] leaves the contracted algebras with the particular Z; structure

1 11
0

which suggests a generalization along our point of view. A detailed discusston about this
topic is postponed to a future publication.

The deformation of a geometry into another one, using the concept of contraction, has
been studied in [17] (although using a completely different approach). Group contractions,
interpreted as quasi-catastrophical connections between different geometries or topological
fluctuations in spacetime, have been considered in [18], establishing a relation between
different models of the universe.

Acknowledgments

The author is indebted to Drs R C Myers and R T Sharp for reading the manuscript and to
the referees for useful comments. This work has been supported by the Natural Sciences
and Engineering Research Council of Canada.



4548

M de Montigny

References

(1
{2]
131
f4]
(5]
(6]
g}
[8)
[9]
(10
(11
(12]

[13]
(14]

{13]

f16]

{171

[18]

Indni E and Wigner E P 1953 Proc. Nail Acad. Sci. US' 39 510-24

Gilmore R 1974 Lie Groups, Lie Algebras and Some of Their Applications (New York: Wiley) ch 10

de Montigny M and Patera J 1991 J. Phys. A: Muth, Gen. 24 52547

Moody R V and Patera 1 1991 /. Phys. A: Math. Gen. 24 2227-57

Bincer A M and Patera T 1993 J. Phys. A: Mati. Gen. 26 56218

Patera J and Zassenhaus H 1989 Lin. Alg. Appl. 112 8§7-159

Patera J 1989 J. Math, Phys. 30 2756-62

Couture M, Patera }, Sharp R T and Winternitz P 1991 J, Marh, Phys, 32 2310-8

Majumdar P 1993 J. Muth, Phys. 34 2059-65

Schrans § 1993 Class. Quantum Grav. 10 L173-81

Witten E 1984 Commun, Math. Phys. 92 435-T2

Nappi C R and Witten E 1993 A wzw model based on a non-semi-simple group Preprint IASSNS-HEP
93/61, hep-th/9310112

Sfetsos K 1993 Gauging a non-semi-simple Wzw model Preprint THU 93/30, hep-th/93110]0

Cangemi D apd Jackiw R 1992 Phys. Rev. Lest. 69 233-6

Cangemi D private communication

Olive D I, Rabinovici E and Schwimmer A 1993 A class of string backgrounds as a semiclassical limit of
wzw models Preprint SWA 93-94/15, WIS 93/1-CS, RI 93/69, hep-th/9311081

Sfetsos K 1993 Exact string backgrounds from WZw models based on non-semi-simple group Preprint THU
93/31 (1993}, hep-th/9311093; 1994 Ganged WZw models and non-Abelian duality Preprint THU 94/01,
hep-th/9402031

Hermanz F J, de Montigny M, del Olmo M A and Santander M 1994 J. Phys, A: Math. Gen. 27 2515-26;
1994 Preprint hep-th/9312126

Mignani R 1978 Lett. Nuov. Cin. 33 349-52



