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Graded contractions of bilinear invariant forms of Lie algebra 

Marc de Montigny 
Department of Physics, McGill University, Montreal. Quebec. H3A 2T8, Canada 

Received 28 Februw 1994 

Abstract. We introduce a new consuuction far bilmex i n w i m t  forms on Lie algebras based 
on the method of graded contractions. The general method is descnbed m d  the 232, Z? and 
Zz @ & wnu’actions me found. The results can be applied to all Lie algebras and superalgebra 
(finite or infinite dimensional) which admit the chosen gradings. We eonsider some examples: 
contractions of the Killing form, toroidal wnmlions of d ( 3 ,  C) and we b”e0y discuss the 
limit to new Wess-Zumino-Witten actions. 

1. Intoduction 

Contractions of Lie algebras were introduced into physics forty years ago by Wigner and 
Inonu in order to obtain a formal method of passing from the Poincark group to the Galilei 
group [I]. In general, contractions consist of the introduction of parameters into the basis of 
a Lie algebra such that, for some singular value of these parameters, we get a different (i.e. 
non-isomorphic) algebra. The interest in this method for physics stems from the fact that 
it relates different symmetry groups from which the contracted group can be understood 
as being an ‘approximation’ of the ‘exact’ or non-contracted group. (A discussion of the 
concept of contraction and some generalizations of the Wigner-Inonii method are given in 

A different approach has been developed recently which is based on the preservation 
of  some grading of the Lie algebra through the contraction procedure. The general method 
of so-called graded contractions is presented in [3]. Clearly, as a Lie algebra is contracted, 
many related objects are deformed as well, for example their representations, the tensor 
product of their representations, their Casimir operators, etc. The methods of graded 
contractions for the representations (which contain the contractions of algebras as a particular 
case) and their Casimu operators can be found in [4] and [5], respectively. However, 
contractions of bilinear invariant forms have not been considered within that framework so 
that one is restricted to the Killing form of the contracted algebras. The present method 
allows one to enlarge the possibilities and, in some sense, completes the general theory of 
graded contractions. 

In this paper, we use the concept of graded contractions of Lie algebras to construct 
new symmetric bilinear invariant forms of Lie algebras (in general, non-semisimple) starting 
from the known bilinear form of a non-contracted algebra. Even within a single Lie algebra, 
one can obtain different bilinear forms starting from one bilinear invariant Form. As for the 
method of graded contractions of algebras, the present procedure is very general and can 
be applied to any Lie algebra or superalgebra of finite or infinite dimension. In addition, 
the results are universal in the sense that, given a grading group (which is Abelian for 
our purpose), the problem is solved simultaneously for all Lie algebras of any type and 
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dimension which admit the chosen grading. The construction is prescnted in the next 
section. In section 3, we find the general bilinear invariant form obtained from preserving 
Zz, 2 3  and Zz 63 Z x  gradings. In section 4 we present some examples: contractions of the 
Killing form, toroidal contractions of d ( 3 ,  C) (or, more precisely, of its complexificafion 
A z )  and the ‘deformation’ of Wess-Zumin-Wiften gym) actions (defined over some group 
manifold) into modified wzw actions defined over a contracted group. 

2. Description of the method 

Consider a Lie algebra g (corresponding to a Lie group G) defined over the field a(= R 
or C). A symmetric bilinear invariant form Q on g is a mapping 

Q : g x g + K  (2.1) 

which satisfies the symmetry property 

Q(X, Y) = Q(Y, X) (2.2) 

and is G-invariant 

n(I9xI9-1, BYO-’) = Q(X, Y) 

with X. Y E g and I9 E G. 
In terms of the element 2 E g corresponding to 8, (2.3) is equivalent to 

(2.3) 

Q(X, [Z, Yl) + Q(Y, E, XI) = 0. (2.4) 

Given a basis (XI, . . . , X,,,,,,) of g such that [X,, X,] = ff,Xc, the bilinear form is 
often witten as a matrix Q,, = Q(X,, X,) which is symmetric (from (2.2)) and satisfies 
~,&QcD + f.$’h = 0 (from (2.4)). 

Let us recall some definitions and properties that WE need from the theory of graded 
contractions of Lie algebras (more details are in [3,4]). A r grading of a Lie algebra g 
consists of the decomposition 

into eigenspaces under the action of a set of automorphisms of finite order on g (for our 
purposes we can take r to be an Abelian finite group). Each of these automorphisms 
provides g with a grading by a cyclic group having the same order. Thus, the grading 
group r is the tensor product of all the cyclic groups associated with every automorphism: 

The commutators in g inherit a grading structure from the automorphisms of finite order, 

(2.6) 

r = gz,. 

i.e. if X E g, and Y E g,, then 

IX, YI = 2 E gp+v 

where Z can be equal to zero. (The addition p + U denotes the product of elements p and 
v in the grading group r.) This grading structure can be written symbolically 

o + tg,, gyI c gKt, M .  U, P + E r. (2.7) 
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A graded contraction g‘ of g is defined by modifying the commutators 

[ge ,  g”le = E, .”k , ,  g.1 E E,.”g,+” (2.8) 

where E E M. We have kept the E parameter in the right-hand side of (2.8) in order to show 
that if E = 0 then the commutator of an element of g, with an element of g, vanishes. 
From the definition (2.8), we see that the E parameters are symmetric (i.e. E&,” = E ~ , ~ )  and 
by enforcing the Jacobi identities on the new commutators one finds that the E parameters 
must satisfy the contraction relations 

Ep.vEp+v,A E u , A E u + A . ~  (2.9) 

for all values of the indices. A solution E of (2.9) defines a contraction, i.e. a new Lie 
algebra. 

Now we define the contractions of the bilinear invariant form a. Using the same 
notation as in (2.7), we define the contracted symmetric bilinear invariant form RV as 

QY(g,. 8 , )  5 Y * , ” W , ?  g.) (2.10) 

with y,,. E K and g,(g,) representing any element X E g,(gv). 

a contracted algebra), we get the following restrictions upon y :  
From the properties of symmetry and invariance, and given a contraction mamx E (i.e. 

Y&,” = Y”., (2.11) 

and 

EA.,YA+,,” = EA.”n+”.p. (2.12) 

Proof. The relation (2.11) follows from equations (2.2) and (2.10). 
The condition (2.12) is obtained from substituting (2.10) into (2.4) 

av(gn ,  [gi. 8 ~ 1 ~ )  f nv(gv,  [gA, g~ls) = 0 

av(g,* Ek, !J [gA,  g”1) + QY(g,, EA,p[gA> gel) = 0 

EA.vY@.A+vn(g&, [&?A, g v ] )  f E A , p Y v , A + p R ( g v r  [gA. gpl) = 0. 

By comparing the last line with the invariance condition relation 

Wg,, [gx, S”I) + W”, [a, gpl )  = 0 

before contraction, we see that one must have ~ i , ~ y , . ~ + ~  = EA,,Y~,A+,. The form (2.12) is 
0 

The solutions of (2.1 1) and (2.12) provide new invariant bilinear forms obtained by 
substituting the y parameters back into (2.10). As for the contractions of algebras and 
representations, there is a trivial contracted bilinear form for which all ys are equal to zero. 
However, the solution with all the y s  equal to one is not trivial. As explained in [3], the 
equations in (2.9) which contain an undefined E (when the corresponding commutator has 
already vanished in the non-contracted algebra) do not appear in the system of equations 

obtained by using the symmetry properties of E and y .  
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to be solved. The same occurs for the ys. If p and U are such that Q(g,, gv)  = 0 then 
the equations containing the corresponding y,,” must be removed from the system (2.12). 
If it does not happcn, we say that this grading is generic regarding the invariant bilinear 
form. Note that definitions (2.8) and (2.10) also allow one to consider deformations, i.e. 
processes which occur after some commutators or bilinear forms-initially zero-become 
non-trivial but which nevertheless satisfy the grading property. We shall not consider this 
type of process below. 

Note also that here, in general, the ‘composition’ (y1 y ~ ) , , ~  = ( y ~ ) , , ~ ( y & ~  (without 
summation over repeated indices) of solution matrices, which we have defined for the 
contractions of algebras in equations (2.8) and (2.9) of [3], does not yield a new solution. 
Thus, given two solutions of (2.12). yl and yz, their composition will not be a solution 
unless extremely particular conditions on the E S  are satisfied. The same applies for the 
‘normalization’ of the ys because it is related to the normalization of the E S .  If we 
perform a change of basis g, + gh = u,g, then the invariant bilinear form becomes 
G’(gL, g:) = y,,,/(u,n,)i2(gp,gv). Unless we consider very particular values of y s  and 
E S ,  it will not be possible to satisfy yfi.Y/(apa,) = 1 for all ys. Unlike the contractions 
of representations, where we can normalize the parameters + (see [4)) by changing the 
basis of the representation vector space independently of the basis of the algebra, here the 
normalizations of E and y are interdependent. 

3. Zjbp, 4 and Zz Q & contractions 

In this section, we find the contractions of the invariant bilinear forms, using the results 
of 131, for Lie algebras over the field of complex numbers. As in [3], we consider the 
contractions with gradings of generic type. We have not normalized the ys in order to 
display the possible zero parameters. (Note that the E S  of the present paper are the ys in 
PI.) 
3.1. Z2 contractions 

The grading group consists of two elements r = [O, 1) with the product (denoted additively) 

o + o = o  O + l = 1 + 0 = 1  1+1=0. 

There are three independent y parameters: y0.0, y0.1 (= y1.0) and y1.1. We shall cast them 
into a matrix form 

although it should not be considered formally as a matrix, since none of the properties 
of matrices-multiplication, inverse, determinant, etc-is shared by the present objects. 
(Hereafter, we write only the upper triangular elements of y and E ,  remembering that they 
are symmetric.) 

The condition (2.12) gives, for Z2, 

Eo.oY0.1 = E0.1Yo.i Eo.iYi.1 =EI,IYo,o. (3.1) 

For the trivial contraction 
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the relations (3.1) become y0.1 = yo.] and y0.0 = y1.1 (which imposes no further restriction 
upon ~0.1). For the other trivial contraction 

0 0  .=( , ) = ( O )  

there are no restrictions on y which are thus completely free. If ~ 0 . 0  # ~ 0 . 1  then y0.1 must 
vanish. This happens for the Wigner-Inonii-like contraction matrix 

In summary, we find the following contractions: 

0 0  a b  .=( 0 )  y = (  c )  

.=( 0) .=( b) 

.=( .=(a ;) 

1 0  a 0  

0 0  

E = ( '  A) Y=( a b  

where a, b and c are arbitrary (possibly zero) complex numbers. 

3.2. Z3 contractions 

The iZ3 contractions (Z3 consists of three elements 0, 1 ,2  on which the product is the usual 
addition modulo 3) are determined by six parameters (cast into matrix form) 

Y1.1 YI.2 , 1 YO.0 Y0.l YO,> 

r2.z 
Y=( 

In terms of these parameters, the restrictions (2.12) are 

.O.OYO.l = .O,IYO.I .I,lYZ,2 = .I,ZYO.l .O.OYO,Z = &0.2Y0.2 

E0.2Yl.2 = EI2Y0,O EO.lYl.2 = E0,ZYl.Z EO,ZY2,2 = E2,ZYO.I (3.3) 
.O.lYI.l = .I,IYO.Z &1.2YO.Z = .2,ZYI1.1 .O.IYI.Z = &I,ZYO.O. 

And the solutions are (with the ES given in section 4 of [3]): 
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a b 0  
y(Ex") = ( C :) 

where a .  b, c and d are arbitrary. The matrix E = (1) has all its entries equal to 1 (it is not 
the identity matrix). Obviously, the ys corresponding to E = (0) are free. 

3.3. Z2 0 Z2 contractions. 

The grading group consists of four elements that we name a = 00, b = 01, c = 10 and 
d = 11 so that their product is a + k  = k ,  2k = a  (k = a , ,  , . , d )  and b+c = d ,  c+d = b 
and b + d = c. In the generic case (i.e. when all the ES are defined), the equations (2.12) 
are 

where k = b, c. d .  The y solutions (corresponding to the E solutions given in [31) are in 
tables 1 and 2. 
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Table 1. Zz @% "actions of invariant bilinear f o m .  The y solutions corresponding to the 
contractions of algebras given in table 1 of [31 on which they must be superposed. 

e b c d  o b e d  O a O b  O b 0  

a b e d  o b e d  O a O h  O h 0  

O O n b  O O a b  0 0 0 0  0 0 " O  

a b 0 0  o b 0 0  o u o o  n o 0 0  

4. Examples 

4.1. Contractions of Killing form 

First, consider the algebra A ]  (the complexification of d(2,C))  with basis elements 
{ X ,  Y ,  Z ]  and commutation relations 

[ X ,  Y ]  = z [ Y ,  Z ]  = x [ Z ,  XI = Y .  

From these we find that the Killing form Qfilling(.. .) = Tr(ad(,)ad(.)) is equal to 

QKiiEDg = diag(-2, -2. -2). (4.1) 

Now consider the ZZ @ 4 grading 

L h  = cx L, = C Y  Ld = cz (4.2) 

where we use the same notation for the grading-group elements as in subsection 3.3. 
Following (2.8), the commutators are modified to 

[ x ,  ylt = &b.cZ [ y ,  21s = Ec.dX [z ,  XIS  = &h.dY (4.3) 

so that the Killing form that we get from the adjoint representation is 

(4.4) S2Kil!i"g.r = -2di%(Eb,cE6,d9 8b,c&C,d, &b,d&c,d). 

Now if we apply the definition (2.10) for the grading (4.2), the form (4.1) becomes 

(4.5) QKiIli0g.Y = -2d' lag(Yb,b, Yc,c, Y d , d )  
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which is to be compared to (4.4). This is achieved by noting that the equations (2.12) which 
are relevant here (i.e. in which E and y do not contain a as an index) are 

for which 

is a possible solution. By comparing (4.5) with (4.4), we see that the form obtained by 
graded contractions of A I  (i.e. by the introduction of E parameters into the commutators) 
can be compatible with the y-contracted form obtained by the present procedure, i.e. using 
(2.10). 

A similar compatibility exists in any general Lie algebra g with basis {XI, . . . , Xb,[,l] 
such that 

From which we see that p-must be the r inverse of U. (We have written the grading indices 
along with the algebra indices.) 

By introducing E parameters, as in (2.8). this becomes 

Qa'l '"g 'E(X~~, XUB) = Eir,oEv,fi+n ad(X,A)(g+v)c;nD a d ( x u s ) ~ o , ( ~ + ~ ) c  (4.10) 
C.D 

where the E ' S  are relevant if the corresponding commutators are defined. One can compare 
(4.10) to the form obtained via our definition (2.10), i.e. 

QKilti"p.y (XwA, X v E )  = Yp,u QKitti"9 ( X P A I  XvB) (4.11) 

where p i- w = 0 (the identity element in r) if the algebra is such that E* in (4.10) can be 
removed by factorizing. Then one can identify 

Y,." = CE,."E",$+" (4.12) 
cl 

where the sum is over the U indices such that the E S  are defined and with p + U = 0. In 
the particular case of At,  (4.12) is just (4.7). 
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4.2. Toroid01 contractions of A2 

There are four different fine gradings of Az (complexification of the simple Lie algebra 
s1(3,@)) [6,7], one of which is the toroidal (or Carran) grading 

3 AZ ep=-3gfi 

with 

for which the grading group is a. 
Consider the following invariant bilinear form on Az:  

(4.13) 

(4.14) 

where i, j = 1,2, 8 is any root of A2 and all other elements of Q are zero. The only 
relevant y parameters are yo,o and Y ~ , - ~ .  

The grading (4.13) is such that the relevant E parameters are 

El .? ,  &I,-?, E I . - ~ ,  E-Z.-lt E z - 3 ,  E2.-Zy Q - 3 7  E3 . -Z IE3 . - l ,  Q.fi (P  = -3, . . , 7 3). 

From (2.12), we get the following relations: 

Efi,-fiYO,O = Eo.pYp.-g = &O,-fiYfi.-p (4.15) 

for /L = 1,2,3. The possible E parameters have been found and the associated algebras 
identified in [8]. The y solutions are to be substituted into 

(4.16) 

The method can be applied readily to Kac-Moody algebras. Some examples of graded 
contractions of Kac-Moody algebras are given in [3]. (The particular case of Wigner-Inonii 
contractions of Kac-Moody and Vuasoro algebras has been studied explicitly in [9] and 
[ 101, respectively.) 
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4.3. Application to Wm' models 

In this subsection, we exploit the fact that. starting from a Lie algebra g with invariant 
bilinear form S2, one may define a wzw action on the corresponding group manifold [ 1 I]. 
Suppose that the connected group G, which corresponds to the Lie algebra g, is simply 
connected. Consider a three-manifold B with boundary C = aB and 0 (a map from C to 
G) extended to a map from B to G (see [l l]) .  The wzw action on a Riemann surface I: 
is (see [ 121 for further details) 

where a ,  b, c represent indices over C and B and 0-'&0 = A ; X A  (the X s  being basis 
elements of the Lie algebra g). 

Now, if we consider a r grading of g such that X A  E gA, X g  E go etc (A, B, . . . denote 
the grading labels of the subspace to which X A ,  X B ,  . . . belong, respectively), then we get 
a new wzw action 

s w w ( 0 )  = - dzY Yd.oaasA, A + d'y&~heA A A Yc.niZcD&A.L?ffB. A Bo ' Aa Bb Cc 1 
4a 

e.Y 

(4.18) 

The invariant bilinear form CZ' must be non-degenerate, i.e. the inverse W'"' of iZzB must 
be defined such that W A B i Z g C  = 8:. The construction of a wzw model based on a non- 
semisimple group has been discussed recently in [I21 and [13] for ungauged and gauged 
models, respectively. 

From this point of view, we see that the contraction procedure may provide a new 
geometry (in particular, a new spacetime) by starting from the geometry associated with the 
non-contracted wzw model and by 'deforming' it compatibly with the deformation of the 
algebra. The concept of contraction has not been mentioned explicitly in [12,13] although 
the invariant bilinear form used therein was obtained from a contraction procedure [14]. To 
our knowledge, contraction methods have been used explicitly for the first time in [15,16]. 
The contraction used in [I51 leaves the contracted algebras with the particular Z3 structure 

1 1 1  
& = (  1 ;) 

which suggests a generalization along our point of view. A detailed discussion about this 
topic is postponed to a future publication. 

The deformation of a geometry into another one, using the concept of contraction, has 
been studied in [ 171 (although using a completely different approach). Group contractions, 
interpreted as quasi-catastrophical connections between different geometries or topological 
fluctuations in spacetime, have been considered in [18j, establishing a relation between 
different models of the universe. 
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